Edgar preguntado en Ciencias y matemáticasMatemáticas · hace 4 años

¿Cómo factorizo ésta suma o diferencia de cubos?

(x+1)^3 +27

4 respuestas

Calificación
  • hace 4 años
    Respuesta preferida

    pokèmon observa y aprende.

    Veamos

    (x+1)^3 +27 = (x+1)³ +3³

    Siguiendo la fórmula (a+b)³ =(a+b)(a²‒ab+b²)

    (x+1)³ +3³

    =((x+1) +3)[(x+1)² ‒3(x+1)+3²]

    = (x+4)[x²+2x+1 ‒3x‒3 +9]

    = (x+4)[x² ‒x +7]..............................Listo.

    Tu agradecimiento y comentario.

  • hace 4 años

    Lo factorizamos así

    x(x(x+3)+3)+28

    Si lo reducimos

    (x+4)(x^2-x+7)

  • hace 4 años

    La factorizacion de la sums o la diferencia de dos cubos es =

    F^3 + S^3 = ( F + S ) ( F^2 + FS + S^2 )

    En este ejercicio tenemos :

    ( x + 1)^3 + ( 3)^3 = ( x + 1 + 3 )[ ( x + 1 )^2 + ( x + 1)(3) + 3^2 ] =

    Ahora tienes que simplicar y terminas

  • hace 4 años

    No te vamos a hacer la tarea de la escuela y piénsale

    Fuente(s): Yoooooooooooooooo
¿Aún tienes preguntas? Pregunta ahora para obtener respuestas.