Anónimo
Anónimo preguntado en Ciencias socialesPsicología · hace 7 años

¿ayuda con mi vida D: doy 10 puntos?

Miren, estoy a punto (en enero) de entrar a la universidad pero lo que pasa es que no soy muy sociable ya llevo dos años sin ir a la escuela y veo muy poco a mis amigos y a los poquitos que veo los trato muy poco o solo por facebook

soy gracioso y no soy feo ni gordo, de hecho estoy alto y algo guapo pero soy algo timido y lo que pasa es que tengo miedo de no hacer amigos o amigas

por favor ayuda que puedo hacer para mejorar mi vida social?

doy diez puntos a quien responda mejor:)

no lean lo siguiente, es nada mas para que se publique

En mecánica clásica, el trabajo que realiza una fuerza sobre un cuerpo equivale a la energía necesaria para desplazar este cuerpo.1 El trabajo es una magnitud física escalar que se representa con la letra \ W (del inglés Work) y se expresa en unidades de energía, esto es en julios o joules (J) en el Sistema Internacional de Unidades.

Ya que por definición el trabajo es un tránsito de energía,2 nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.

Matemáticamente se expresa como:

\ W=\mathbf F \cdot \mathbf d = F d \cos\alpha

Donde F es el módulo de la fuerza, d es el desplazamiento y \alpha es el ángulo que forman entre sí el vector fuerza y el vector desplazamiento (véase dibujo).

Cuando el vector fuerza es perpendicular al vector desplazamiento del cuerpo sobre el que se aplica, dicha fuerza no realiza trabajo alguno. Asimismo, si no hay desplazamiento, el trabajo también será nulo.

Índice

1 El trabajo en la Mecánica

2 El trabajo en la Termodinámica

3 Unidades de trabajo

3.1 Sistema Internacional de Unidades

3.2 Sistema Técnico de Unidades

3.3 Sistema Cegesimal de Unidades

3.4 Sistema anglosajón de unidades

3.5 Sistema técnico inglés

3.6 Otras unidades

4 Véase también

5 Referencias

5.1 Bibliografía

6 Enlaces externos

El trabajo en la Mecánica

Trabajo de una fuerza.

Consideremos una partícula P sobre la que actúa una fuerza F, función de la posición de la partícula en el espacio, esto es F=F(\mathbf r) y sea \mathrm d \mathbf r un desplazamiento elemental (infinitesimal) experimentado por la partícula durante un intervalo de tiempo \mathrm d t. Llamamos trabajo elemental, \mathrm d W, de la fuerza \mathbf F durante el desplazamiento elemental \mathrm d \mathbf r al producto escalar \ F \cdot \mathrm d \mathbf r; esto es,

\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r \,

Si representamos por \mathrm d s la longitud de arco (medido sobre la trayectoria de la partícula) en el desplazamiento elemental, esto es \mathrm d s = |\mathrm d \mathbf r| , entonces el vector tangente a la trayectoria viene dado por \mathbf e_{\text{t}} = \mathrm d \mathbf r / \mathrm d s y podemos escribir la expresión anterior en la forma

\mathrm d W=\mathbf F \cdot \mathrm d \mathbf r = \mathbf F \cdot \mathbf e_{\text{t}} \mathrm d s = (F \cos\theta )\mathrm d s = F_{\text{s}} \mathrm d s \,

donde \theta representa el ángulo determinado por los vectores \mathrm d \mathbf F y \mathbf e_{\text{t}} y F_{\text{s}} es la componente de la fuerza F en la dirección del desplazamiento elemental \mathrm d \mathbf r.

El trabajo realizado por la fuerza \mathbf F durante un desplazamiento elemental de la partícula sobre la que está aplicada es una magnitud escalar, que podrá ser positiva, nula o negativa, según que el ángulo \theta sea agudo, recto u obtuso.

Si la partícula P recorre una cierta trayectoria en el espacio, su desplazamiento total entre dos posiciones A y B puede considerarse como el resultado de sumar infinitos desplazamientos elementales \mathrm d \mathbf r y el trabajo total realizado por la fuerza \mathbf F en ese desplazamiento será la suma de todos esos trabajos elementales; o sea

W_{\text{AB}}=\int_{\text{A}}^{\text{B}} \mathbf F \cdot \mathrm d \mathbf r \,

Esto es, el trabajo viene dado por la integral curvilínea de \mathbf F a lo largo de la curva C que une los dos puntos; en otras palabras, por la circulación de \mathbf F sobre la curva C entre los puntos A y B. Así pues, el trabajo es una magnitud física escalar que dependerá en general de la trayectoria que una los puntos A y B, a no ser que la fuerza \mathbf F sea conservativa, en cuyo caso el trabajo resultará ser independiente del camino seguido para ir del punto A al punto B, siendo nulo en una trayectoria cerrada. Así, podemos afirmar que el trabajo no es una variable de estado.

En el caso particular de que la fuerza aplicada a la partícula sea constante (en módulo, dirección3 y sentido4 ), se tiene que

1 respuesta

Calificación
  • Anónimo
    hace 7 años
    Mejor Respuesta

    Yo soy igual solo que yo cuando tengo confianza soy muy tontilla. Si tienes confianza se como seas e intenta integrarte aunque no ables mucho pero poco a poco te aras mas sociable suerte :)

    • Inicia sesión para responder preguntas
¿Aún tienes preguntas? Pregunta ahora para obtener respuestas.